
Introduction Search Optimisation Results Conclusion

Finding Optimal Bitsliced Implementations of
4× 4-bit S-boxes

SKEW 2011
February 17, 2011

Markus Ullrich, Christophe De Cannière, Sebastiaan Indesteege,
Özgül Küçük, Nicky Mouha and Bart Preneel

Introduction Search Optimisation Results Conclusion

Contents

1 Introduction

2 Search

3 Optimisation

4 Results

5 Conclusion

Introduction Search Optimisation Results Conclusion

Contents

1 Introduction

2 Search

3 Optimisation

4 Results

5 Conclusion

Introduction Search Optimisation Results Conclusion

Problem

1 How can we find THE most efficient implementations of
s-boxes?

2 Can we find the optimal s-boxes covering all the s-boxes?

S-boxes limited to

4× 4-bit s-boxes
Invertible s-boxes

Introduction Search Optimisation Results Conclusion

Problem

1 How can we find THE most efficient implementations of
s-boxes?

2 Can we find the optimal s-boxes covering all the s-boxes?

S-boxes limited to

4× 4-bit s-boxes
Invertible s-boxes

Introduction Search Optimisation Results Conclusion

Architecture

Software implementation
using bitslicing

4+1 register

Instruction set

AND

OR

XOR

NOT

MOV

No parallelism

Introduction Search Optimisation Results Conclusion

Contents

1 Introduction

2 Search

3 Optimisation

4 Results

5 Conclusion

Introduction Search Optimisation Results Conclusion

Search

Introduction Search Optimisation Results Conclusion

Search method

Enumerating all s-boxes in order of cost function

No heuristics

Limited to applications with monotonously increasing cost
functions

Introduction Search Optimisation Results Conclusion

Equivalence

Affine equivalence:

Classification according to affine
equivalence
Definition: S1(x) = B(S2(Ax ⊕ a)⊕ b)
Properties regarding linear and
differential cryptanalysis invariant

Introduction Search Optimisation Results Conclusion

Search

Introduction Search Optimisation Results Conclusion

Contents

1 Introduction

2 Search

3 Optimisation

4 Results

5 Conclusion

Introduction Search Optimisation Results Conclusion

Reducing the branching factor

Rule set from D. A. Osvik1

S-box invertible
No double negation
Reading before overwriting
Uninitialised values cannot be read
Double nodes are dismissed

1
Dag Arne Osvik: Speeding up Serpent. AES Candidate Conference 2000

Introduction Search Optimisation Results Conclusion

Advanced caching

Introduction Search Optimisation Results Conclusion

Advanced caching

Introduction Search Optimisation Results Conclusion

Advanced caching

Introduction Search Optimisation Results Conclusion

Advanced caching

Introduction Search Optimisation Results Conclusion

Advanced caching

Initial approach: dismissing nodes that are equal

New approach: using affine equivalences

Introduction Search Optimisation Results Conclusion

Contents

1 Introduction

2 Search

3 Optimisation

4 Results

5 Conclusion

Introduction Search Optimisation Results Conclusion

Overview

Searched until cost of 12 instructions

more than 2 month on 8 Xeon cores with 64GB RAM

272 out of 302 classes found

Cover 90% of all s-boxes

For each of these classes:

Representative
Assembly code

Introduction Search Optimisation Results Conclusion

Linear and differential properties

MLP −1/2 1/8 1/4 3/8 1/2
|c | 1/4 1/2 3/4 1

min. cost - 9 9 0

MDP 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

min. cost - 9 10 6 9 6 - 0

Introduction Search Optimisation Results Conclusion

‘Smallest s-box ever’

9 instructions

MDP = 1/4

MLP = 1/2 + 1/4

ASM code

0 MOV r4 r0
1 AND r0 r1
2 XOR r0 r2
3 OR r2 r1
4 XOR r2 r3
5 AND r3 r0
6 XOR r3 r4
7 AND r4 r2
8 XOR r1 r4

r0 r1 r2 r3

Introduction Search Optimisation Results Conclusion

Compared with literature

Cipher S-box Class cost rep. cost s-box
inst. (cycl.)

Serpent S4, S5 9 11 19 (10)

S−1
4 ,S−1

5 10 12 19 (10)

S−1
0 ,S1 14 10 18 (10)

S0,S−1
1 15 10 18 (9)

S2,S−1
2 ,S6,S−1

6 16 11 16 (8)

S3,S−1
3 ,S7,S−1

7 not found - 18 (10)

Luffa Q 16 11 16 (6)

Noekeon S = S−1 13 9 16

Introduction Search Optimisation Results Conclusion

A new design approach

Old approach

1 Designing the parts other
than s-box

specifications get refined
more and more

2 Finding s-boxes that fulfil
the requirements

New approach

1 Choosing an s-box class

2 Selecting the most efficient
representative as s-box

3 Designing the other
components of the cipher

Introduction Search Optimisation Results Conclusion

Contents

1 Introduction

2 Search

3 Optimisation

4 Results

5 Conclusion

Introduction Search Optimisation Results Conclusion

Open problems and future research

Verifying the new design approach

Affine equivalence and the NOT instruction

More advanced architectures (SSE, parallelisation)

Using other classification criteria

Introduction Search Optimisation Results Conclusion

Conclusion

An approach to systematically search efficient
implementations of s-boxes has been presented

Most s-box classes have been found

Interesting tradeoffs
Compared with literature

New design approach has been proposed

Introduction Search Optimisation Results Conclusion

Questions

Questions?

	Introduction
	
	

	Search
	
	
	
	

	Optimisation
	
	
	

	Results
	
	
	
	
	

	Conclusion
	
	
	

