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Problem

1 How can we find THE most efficient implementations of
s-boxes?

2 Can we find the optimal s-boxes covering all the s-boxes?

S-boxes limited to

4× 4-bit s-boxes
Invertible s-boxes
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Architecture

Software implementation
using bitslicing

4+1 register

Instruction set

AND

OR

XOR

NOT

MOV

No parallelism
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Search method

Enumerating all s-boxes in order of cost function

No heuristics

Limited to applications with monotonously increasing cost
functions
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Equivalence

Affine equivalence:

Classification according to affine
equivalence
Definition: S1(x) = B(S2(Ax ⊕ a)⊕ b)
Properties regarding linear and
differential cryptanalysis invariant
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Reducing the branching factor

Rule set from D. A. Osvik1

S-box invertible
No double negation
Reading before overwriting
Uninitialised values cannot be read
Double nodes are dismissed

1
Dag Arne Osvik: Speeding up Serpent. AES Candidate Conference 2000
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Advanced caching

Initial approach: dismissing nodes that are equal

New approach: using affine equivalences
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Overview

Searched until cost of 12 instructions

more than 2 month on 8 Xeon cores with 64GB RAM

272 out of 302 classes found

Cover 90% of all s-boxes

For each of these classes:

Representative
Assembly code
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Linear and differential properties

MLP −1/2 1/8 1/4 3/8 1/2
|c | 1/4 1/2 3/4 1

min. cost - 9 9 0

MDP 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

min. cost - 9 10 6 9 6 - 0
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‘Smallest s-box ever’

9 instructions

MDP = 1/4

MLP = 1/2 + 1/4

ASM code

0 MOV r4 r0
1 AND r0 r1
2 XOR r0 r2
3 OR r2 r1
4 XOR r2 r3
5 AND r3 r0
6 XOR r3 r4
7 AND r4 r2
8 XOR r1 r4

r0 r1 r2 r3
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Compared with literature

Cipher S-box Class cost rep. cost s-box
inst. (cycl.)

Serpent S4, S5 9 11 19 (10)

S−1
4 ,S−1

5 10 12 19 (10)

S−1
0 ,S1 14 10 18 (10)

S0,S−1
1 15 10 18 (9)

S2,S−1
2 ,S6,S−1

6 16 11 16 (8)

S3,S−1
3 ,S7,S−1

7 not found - 18 (10)

Luffa Q 16 11 16 (6)

Noekeon S = S−1 13 9 16
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A new design approach

Old approach

1 Designing the parts other
than s-box

specifications get refined
more and more

2 Finding s-boxes that fulfil
the requirements

New approach

1 Choosing an s-box class

2 Selecting the most efficient
representative as s-box

3 Designing the other
components of the cipher
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Open problems and future research

Verifying the new design approach

Affine equivalence and the NOT instruction

More advanced architectures (SSE, parallelisation)

Using other classification criteria
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Conclusion

An approach to systematically search efficient
implementations of s-boxes has been presented

Most s-box classes have been found

Interesting tradeoffs
Compared with literature

New design approach has been proposed
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Questions

Questions?
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