Finding Optimal Bitsliced Implementations of
4 x 4-bit S-boxes

SKEW 2011
February 17, 2011

I__/Iarkus Ullrich, Christophe De Canniere, Sebastiaan Indesteege,
Ozgiil Kiiclik, Nicky Mouha and Bart Preneel

Contents

@ Introduction

© Scarch

© Optimisation

@ Results

© Conclusion

Introduction

Contents

@ Introduction

Introduction
°

Problem

@ How can we find THE most efficient implementations of
s-boxes?

@ Can we find the optimal s-boxes covering all the s-boxes?

Introduction
°

Problem

@ How can we find THE most efficient implementations of
s-boxes?

@ Can we find the optimal s-boxes covering all the s-boxes?

@ S-boxes limited to

o 4 x 4-bit s-boxes
e Invertible s-boxes

Introduction
.

Architecture

@ Software implementation
using bitslicing

@ 4+1 register

@ Instruction set

e AND
e OR

e XOR
o NOT
e MOV

@ No parallelism

regO|XX

XXXXX

regl |xx

XXXXX]

reg2 |x

XXXXX

reg3 [xix

XXXXX]

reg4 [xix

XXXXX

Search

Contents

© Scarch

Search

Search

ASM:
MOV r0 r4
AND r0O rl

r0=0x8888
r1=0xCCCC
r2=0xFOF0O
r3=0xFFO0O
r4=0xAAAA

r0=0xAAAA
r1=0xCCccC
r2=0xFOF0
r3=0xFFOO
r4=0xXXXX

Search
°

Search method

@ Enumerating all s-boxes in order of cost function
e No heuristics

@ Limited to applications with monotonously increasing cost
functions

Search
°

Equivalence

o Affine equivalence:
o Classification according to affine a—9
equivalence
o Definition: S1(x) = B(S2(Ax @ a) @ b) 51 52
o Properties regarding linear and b—&b

differential cryptanalysis invariant E

Search

Search

ASM:
MOV r0 r4
AND r0O rl

r0=0x8888
r1=0xCCCC
r2=0xFOF0O
r3=0xFFO0O
r4=0xAAAA

r0=0xAAAA
r1=0xCCccC
r2=0xFOF0
r3=0xFFOO
r4=0xXXXX

Optimisation

Contents

© Optimisation

Optimisation
.

Reducing the branching factor

@ Rule set from D. A. Osvik!

S-box invertible

No double negation

Reading before overwriting
Uninitialised values cannot be read
Double nodes are dismissed

1
Dag Arne Osvik: Speeding up Serpent. AES Candidate Conference 2000

Advanced caching

Advanced caching

Advanced caching

Advanced caching

Optimisation

Advanced caching

@ Initial approach: dismissing nodes that are equal

@ New approach: using affine equivalences

A
a—3 .
S1 S2

3

B

Bit permutation|

Results

Contents

@ Results

Results
°

Overview

@ Searched until cost of 12 instructions

@ more than 2 month on 8 Xeon cores with 64GB RAM
@ 272 out of 302 classes found
°
°

Cover 90% of all s-boxes

For each of these classes:

e Representative
e Assembly code

Results
°

Linear and differential properties

MLP —-1/2 | 1/8 1/4 3/8 1/2
e 1/4 1/2 3/4 1
min. cost ‘ - 9 9 0

MDP |1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
min.cst| - 9 10 6 9 6 - 0

Results
°

‘Smallest s-box ever’

@ 9 instructions
e MDP =1/4
e MLP =1/2+4+1/4

ASM code

0 MOV r4 r0
1 AND r0 r1
L 2 XOR r0 r2

30Rr2r1
z 4 XOR r2 r3
5 AND r3 r0
(‘j 6 XOR r3 r4
7 AND r4 r2
? 8 XOR r1 r4

rOrl r2r3

Results
°

Compared with literature

Cipher S-box Class cost rep. cost s-box
inst. (cycl.)
Serpent 5S4, S5 9 11 19 (10)
S; St 10 12 19 (10)
Sot.St 14 10 18 (10)
So0.5;* 15 10 18 (9)
$,5,15.S¢t 16 11 16 (8)
$3,5;1,57,5;1 not found - 18 (10)
Luffa Q 16 11 16 (6)

Noekeon S =571 13 9 16

Results
°

A new design approach

Old approach New approach

© Designing the parts other © Choosing an s-box class

than s-box @ Selecting the most efficient

o specifications get refined representative as s-box

more and more O Designi H h
Lo . esigning the other
@ Finding s-boxes that fulfil g e P

the requirements /

Conclusion

Contents

© Conclusion

Conclusion
°

Open problems and future research

@ Verifying the new design approach
o Affine equivalence and the NOT instruction
@ More advanced architectures (SSE, parallelisation)

@ Using other classification criteria

Conclusion
°

Conclusion

@ An approach to systematically search efficient
implementations of s-boxes has been presented
@ Most s-box classes have been found
e Interesting tradeoffs
o Compared with literature

@ New design approach has been proposed

Questions

Questions?

	Introduction
	
	

	Search
	
	
	
	

	Optimisation
	
	
	

	Results
	
	
	
	
	

	Conclusion
	
	
	

